HISTORY IN THE NATIONAL PARK OF AMERICAN SAMOA:
FIELD METHODS AND ARCHAEOLOGICAL APPROACH

EPIFANIA SUAFO'A

INTRODUCTION

Archeology, as a sub-field of anthropology, is the study and reconstruction of past human experience as reflected in material culture and artifacts. In many instances, archaeological sites represent the sole source of new information on a particular cultural group or time period. This paper will present specific information on how the Samoan people lived before first contact with Europeans. The location of Samoa is shown in the map (see Figure 1 page 204). Archeological data will be used to supplement, modify and correct the human record. Additional issues that we, the National Park of American Samoa’s (NPAS) archaeologist team, will address are:

- Dating the settlement of the Samoan people in this area
- Are sites at mountain elevation fortifications or agricultural sites?
- How do the mountain sites differ from coastal settlement sites?

Cultural preservation and conservation in the National Park of American Samoa is mandated under Public Law 100-571 (1988). The law states that the Park’s role is to preserve and conserve all cultural resources of value on the 12,000 acres that make up NPAS.

In Samoan culture (fa'asamoan), the people are tied to their land through titles and family holdings. This mainstay of Samoan culture has remained intact despite 100 years of contact with the United States of America, 170 years of missionaries, and the outside world in general.

Land cannot be bought by non-American Samoans, thus the United States Government leased land from seven villages in order to create the National Park. These villages are located on the islands of Ofu, Ta'u and Tutuila. The villages of Afono, Vatia, Pago, and Fagasa are located in the general vicinity of Pago Pago Harbor (Figure 2); Ta'u, Fiti'uta, Fa'aleaulu and Ofu are located 63 miles away on the Manu'a Islands.

This paper will focus on Vatia village, located on Tutuila Island. Vatia represents a focal area of study because it is the site of NPAS’s first Trail Development Project. The archaeological work in the area of trail development was performed several years ago and, at that time, an archaeological ground survey assessed and collected baseline data. Anecdotes taken from oral histories recorded in 1995 and 2000 will be used to illustrate the social activities that occurred around the sites of interest.

The Vatia Ridge was first assessed in the summer of 1995. During these assessments, we discovered rock alignments, terrace face alignments, possible graves (tia-sa), and house platforms (tulaga fale) and filled pavement (ili'ilī) used in housing.

ISLAND LOCATION AND BACKGROUND

American Samoa is located 65 miles east of Upolu, Western Samoa, and more than 200 miles south of the Tonga archipelago (Figure 1). It lies at 14º south and 171º west. The National Park Service leased six thousand-eight hundred and twenty-four (6,820) acres; this included two miles of offshore coral reef on the island of Manu'a. On Manu'a, the NPAS leased two thousand-five hundred and fifty (2,550) acres. Although these islands are small, narrow, rugged, and steep, there are significant cultural remains on the ridges.

GEOLOGY OF TUTUILA

The islands of American Samoa are, geologically speaking, relatively young. The last lava flow occurred in the early 1900s. Pago village, the hub of the island, is situated along the side of the Pago Crater. All of the villages and areas that link with the Pago Crater are composed of Ppe type rocks (Ppe rocks are upper layers of basaltic, andesitic flow that consists of cone dike rocks, Coastal Zone Management (1981)). These rocks are quite common throughout the Pago Crater and also at a few other venues that are affiliated with the NPAS. The archaeological features and tools that are found in these areas apparently are not related to the geological disruptions that have occurred in modern times.
Figure 2. The island of Tulia and the villages Ahono, Vela, Pago, and Pagasa.
VEGETATION

The area's vegetation consists mainly of fuefue-sina (the "mile a minute" plant used by Samoans to relieve pain and cure wounds), akone (nutmeg, used for food), ololi (tree ferns), wild ti (green ti is popular for food wraps and medicinal purposes), ifitele and tavai (used for house posts), and the occasional laufala (pandanus plant used for weaving mats). There are also a few nui (coconut palms) in the vicinity.

SAMOAN ARCHAEOLOGICAL BACKGROUND

The five major islands of American Samoa and the four islands that compose Western Samoa (WS) were first settled by Polynesians two to three thousand years ago. Over the past 40 years, several archaeological research projects have been carried out in the Samoan Archipelago, revealing information on the Samoan past.

The first systematic survey of archaeological remains was done in the 1950s by Jack Golson (1957) who described classes of field monuments that were found on the island of Savai'i (WS). According to Golson, these monuments indicated that early settlement on the Samoan Islands had predominantly occurred inland, and only later were settlements located along coastal areas. Golson's studies sparked an archaeological interest in the Samoan Islands.

In 1964-65, Roger Green and Janet Davidson (1964) led several surveys and excavations on the island of Savai'i and Upolu (WS). Their work originated in the Polynesian Archaeology Program at the University of Auckland in New Zealand. The goals of the program included investigation of settlement patterns, an objective that had gained popularity in American archaeology. In addition, their collected artifactual data was useful in building cultural and historical sequences for the islands.

The first survey conducted for the National Park of American Samoa was made by Janet Frost (n.d. and 1978) who excavated seven sites on the eastern side of Tutuila. Several small-scale cultural resource management surveys were also been carried out under contract to the National Park Service and the U.S. Army Corp of Engineers (Ladd and Morris 1970; Kikuchi n.d., 1963, 1964; Kikuchi et al. 1975; McCoy 1977). In 1980, the American Samoan Historic Preservation Commission, under the supervision of Stan Sorenson, conducted several explorations on the islands of Tutuila and Manu'a. Several senior archaeologists led those expeditions: Patrick Kirch and Terry Hunt (1990, 1993), Terry Hunt and Patrick Kirch (1988), William Ayres and David Eisler (1984), Simon Best (1992, 1993), and Jeffrey Clark (1980, 1986, 1989, 1993; Clark et al. 1993).

The village of Ta'u on the Manu'a Islands was originally surveyed by William Kikuchi in early 1975 (Kikuchi et al. 1975). This survey included investigations at the harbor at Fusi and a quarry site between Fusi and Fagamoto. In 1986, Hunt and Kirch surveyed and excavated other sites in Ta'u (1988).

Their major objectives were:

- To compile a catalogue of prehistoric and proto-historic surface archaeological remains through intensive survey.
- To locate and delineate major areas of subsurface deposits; through the use of systematic test excavations.
- To determine the relationship between subsurface archaeological resources and local geomorphological features and processes;
- To generate a predictive model of the number and extent of undiscovered subsurface deposits, on the basis of results from the two prior objectives.
- To enhance the local appreciation of archaeology and historic preservation through the training of local personnel and by a range of public activities (Hunt and Kirch 1988:154-155).

Figure 3. Location of surveyed trails along Sauma Ridges, Maugaloa and Vatia Ridge.
Chapter 5

Results of the survey and test excavations on Ta‘u extended the prehistory of the Manu‘a Islands back to the First Millennium AD, with a cultural assemblage including plainware ceramics (Hunt and Kirch 1988:177).

The archaeological work carried out to date has focused on recording surface features such as house platforms, walled terrace complexes, stone monuments, and the density of scattered debris—basically discarded flakes of manufacturing stone adzes. These projects have been extended by excavations done in the early eighties, conducted in several villages on Tutuila and Manu‘a. Historic and ethnographic evidence was collected to help researchers understand how the ancient archaeological sites may have been utilized by pre-historic Samoans. Jeff Clark (1980) and David Herdrich (1991) were the first archaeologists to record existent sites at Vatia. Their exploration was not in the immediate area of the proposed NPSA trail site, but rather focused on a different area to the west of Vatia. In 1986, Clark noted that there had been no systematic investigation made on occupation sites on the valley floor of the National Park (Clark and Herdrich 1988:45), especially areas of the Vatia, Afono, and Amalau valleys. Clark believes that there is a strong case for early occupation in the Vatia Valley.

VATIA

Vatia is located on the northeast central side of the island of Tutuila, north of Pago Pago, Leloaloa, and Aua villages. According to oral history from High Chief Tagoilelagi of Vatia and other elders of the village (personal communication 1995), Vatia residents used to hike from Vatia to the other side of the mountain before the present road was built in the early 1980s. This ancient path runs from Vatia up to the present TV tower, and then down to Leloaloa and Atu‘u villages, situated along Pago Bay (this journey is estimated to be about 2.2 miles one way).

The Pola rocks located in Vatia are rough, rugged, and sharp igneous basaltic outcrops, part of the Fagasa Family-Lithic Haphadolls association (USGS map). The slope of the path varies from 70% to 130%; the elevation ranges from 0-650 m, and the rainfall in the area is from 3800 mm to 6400 mm annually. The temperature hovers around 22-23°C, and rainfall covers most sections of the ridge.

Brown boobies (fua‘o’s) lay eggs on these rocks and these are considered a delicacy for Vatia villagers. According to High Chiefs Tagoilelagi, Ga‘ote‘oe, Tuiaoseopo, and Simona Lautu, a taua ale‘a (untitled man) must climb the Pola to test his manhood. This is the place where fua‘o’s normally lay their eggs. There are two sections of the Pola, the pola-tai and pola-uta. There is a certain time during the year (October-September) is when the fua‘o’s lay their eggs. To snare the fua‘o’s, the man climbs the Pola from the mountainside heading to the seaside. This practice, extending back to time immemorial, was last performed in the 1980’s.

METHODS AND TOOLS USED FOR INVESTIGATING THE VATIA TRAIL SITE

Several preliminary surveys were made to investigate the Vatia sites by NPSA crew members. During these mini-surveys, the team used a fifty-meter tape, compass, a stadia rod and transit for mapping, a 35 mm camera, GPS unit, and field note books to record field data. All of the features had been marked with yellow/white colored flagging tape for future reference and interpretation.

FINDINGS

The most notable features discovered on the Vatia Powerline Trail (Figure 3, Map 6 and Map 7; Figure 4, Map 6) were seven terraces. Of these seven, five appear to have been used as possible ancient agricultural and residential sites. Archaeologists in Samoa have noted that a residential formation for most Samoan tulaga fales (house platforms) typically are associated with ili‘ili (pebbles). Ili‘ili were also used by ancient Samoans (and their contemporaries) to cover the inside of a fale foundation. These ili‘ili house foundations are some of the most lasting cultural remains of residential structures that can be associated with the terraces found along the trail. There were sixteen such features recorded at the Vatia Powerline Trail. All sixteen archaeological properties were measured, photographed and carefully recorded. The Vatia Powerline Trail features are described below.

Feature 1. Consists of vesicular, fine grain basalt alignment. This feature is located on terrace labeled two (2) with boulder alignments stacked in three columns. This feature appears to be a single rounded arm of a possible star mound. It is located at 57 m elevation. The width varies due to landslides, which may have occurred over time.

Feature 2. This feature is a single alignment that is located on the side of the mountain that might be associated with features 1, and 3. All three features were linked and were measured together.

Feature 3. This feature is a star mound with well-defined, rounded arms. The length is 13.5 m and the width, 6 m. It forms a triangular shape with a single ray pointed north. This is also marked as terrace 3 with yellow
and white colored flagging. This property is adjacent to a magauti tree.

Feature 4. A short distance up the same ridge is a boulder alignment, the face of a terrace built for soil control. It is situated at 64 m elevation on an 86° E/W axis and measures approximately 11 m long; its width varies from 1.8 m to 4.8 m.

Feature 5. This feature is a rock face; the alignment measures to 12.70 m length, at an elevation of 82 m. It is located on an 86° slope.

Feature 6. This feature is a rock mound on the side of a cliff. It measures 6 m long by 6 m wide and is at an elevation of 148 m.

Feature 7. This feature is a boulder alignment located at an elevation of 15 m, 60° north from slope one. It measures roughly 6 m, and is north of feature 8.

Feature 8. This feature appears to be known as “a place to put a leaf” (ma’a tu‘a lau mea). The area consists of large boulders scattered to Electric Pole 5. It measures 17.70 m, and is located at an elevation of 160 m.

Feature 9. Stacked basalt rocks, part of a continuous star mound that leads 50° SE to the Alava ridge. It is situated on a slope of the Vatia Powerline ridge.

Feature 10. (not described)

Feature 11. Aligned basalt rock, also known as (F-7) on the Vatia Powerline map. This feature is an alignment leading 60° NW; it is positioned along the trail and is adjacent to the slope.

Feature 12. This is an excavated pit measuring 3 m wide by 5 m long and depth 1.5 m (F-6) on the Vatia Powerline map and is in the vicinity of the power line between Vatia village and Pago Bay town area.

Feature 13. This ill‘ili pavement is the same as (F-4). The ill‘ili is not coral but water-worn basalt. This object is located immediately along the middle of the trail. The ill‘ili pavement appears to be part of the trail.

Feature 14. Is the same as (F-3). This is a water catchment situated on the mountainside, and appears to be part of a wall. The property is situated along the SE side of the trail. According to Mr. Gasetoto Mauga from the village of Vatia, who acted as our field technician and guide, this was used as a resting area for the Vatia village people in the “olden days”. The generic designation “olden days” refers to any time event that occurred before the paved road in Vatia. The spring refers to the place that provided water to the people of Vatia in the past.

Oral History: Our informant, Mr. Gasetoto Mauga said that “An interesting thing happened during the late 1960s,” A lady and her daughter had returned from the Le Itu (the other side) during a mid-afternoon visit to town. The daughter (age 15) walked ahead of her mother. When the daughter arrived at the water catchment, she waited for her mother to arrive. When the mother reached the place, daughter was not there. The mother believed that daughter had gone down to the village. When the mother arrived at the village, she found that her daughter had not arrived. The mother called for help from the people of the village, and they began a search. The daughter was never found. This mystery has never been solved. Most Vatia villagers claim that a sorcerer had taken her away alive. This frightening story is repeated anew to new generations of village youth.

Feature 15. This feature is similar to (F-2) and is a rock pavement in linear form. It appears as a pavement running in a N/S direction along the trail.

Feature 16. This feature is same as (F-1). It is a rock pavement, in a single alignment located along the NE side of the old Vatia trail. According to Mr. Mauga, this is a remnant of the old trail used to prevent landslides and soil erosion. The rock pavement is now part of the steps for hikers and travelers, as it was for ancient wayfarers.

LOWER/UPPER SA‘UMA RIDGE DESCRIPTION

At the lower Sa‘uma Ridge line (Figure 3, Map 3 and Figure 5, Map 3) we found twenty-two items of note. The lower portion of Sa‘uma Ridge is marked as AS-23-13 and is located less than 0.8 km and 244° SW of Amalau, and approximately 3.2 km and 80° east of Vatia village. In August 2000, our team discovered, mapped, photo-
graphed, and recorded 22 features. The lower Sa’uma Ridge was at one time connected to the upper section of the same ridge, but was separated by a paved road during the 1980s. The upper Sa’uma Ridge (Figure 3, Map 4 and Map 5; Figure 6, Map 4) is marked as AS-23-14. The upper Sa’uma Ridge begins at the 15 MPH road marker on the left-hand side of the road leading to Vatia. On the upper section of Sa’uma Ridge our team discovered forty-nine features, ranging from single, dislodged boulder alignments to a 95 m stacked and rayed rock mound. These rock mounds vary in size, shape, and number of rays presented.

A total of seventy one features were discovered on the lower and upper Sa’uma Ridge. Sixteen were detected and recorded from Vatia. The grand total of features found along the Vatia Powerline Trail and Sa’uma Ridge is eighty-seven. Most of these features have been mapped, photographed and recorded, and the data stored at the National Park of American Samoa office. Copies of the descriptions and photos will be distributed to the American Samoan Historical Preservation Office, American Samoa Community College, and Pacific Island Support Office, Hawai’i.

RECOMMENDATION

The archaeological findings along the Vatia Powerline Trail will not be adversely affected during Phase One of trail renovation. The terrain where most of the trail work will take place is steep, narrow and rough, with few archaeological properties. Our team did not discover any significant tool remains in this area. The gentle slope segments along the Vatia Powerline Trail should have little impact on archaeological sites. There will be no need for excavations and only occasional water diversions to prevent erosion on the trail are necessary. No rocks from the vicinity will be used during construction. Rocks are being purchased and brought to the area for this phase of development. There is some possibility that the trail builders will disturb archaeological properties by walking over them during their work. To reduce this potential impact, the trail crew will be advised of the significant areas and requested to walk lightly over those areas. The site will be monitored while undergoing construction to observe if there are adverse affects on archaeological features.
CONCLUSION

Most of the areas encompassed within the National Park of American Samoa are rugged, rugged, and narrow. These physical geological obstacles did not discourage our Samoan ancestors from creating and building rock mounds, boulder alignments, pavements, and other features including star mounds, re-modified terraces, grave sites, house platforms, adze quarries, possible fortifications, and the single, dislodged boulder alignments that are still visible in the vicinity. These artifacts confirm many millennia of human existence. The archaeological data shows varied uses of the terrain and an intent to use the terrain for cultural and subsistence purposes. Future archaeologists should take the opportunity to investigate these sites for early human occupation.

SUMMARY

Archaeologists study material remains that a cultural system has created both above and below the ground surface. A popular misconception of archaeological sites is that because they are “invisible” they should be treated as separate entities from the above ground or “built” environments. While we do, in fact, look under the present-day ground surface to study and evaluate archaeological remains, archaeological materials both below and above the ground surface remain as part of the human and cultural landscape.

Unlike other natural sources, archaeological sites are nonrenewable; once they are disturbed or destroyed, they cannot be brought back. Even scientific methods such as systematic excavations are destructive, in the sense that they remove archaeological materials from their original physical context. In recent years, a conservation ethic has developed whereby archaeologists typically sample only a portion of a site, leaving the remainder for future archaeologists armed with more advanced methods and procedures that can yield more accurate interpretations. As an archaeologist for NPAS, I invite other archaeologists to join in excavating sites that will describe more of the pre-and modern history of the Samoan people.

REFERENCES

Chapter 5

tory. Department of Anthropology, Bernice P. Bishop Museum, Honolulu.

