by the
American Samoa Coral Reef Advisory Group

Prepared by:
Peter Craig, Nancy Daschbach, Sheila Wiegman
Flinn Curren and Jennifer Aicher

The American Samoa Coral Reef Advisory Group:
Uflagafa Ray Tulafono, Director, Department of Marine and Wildlife Resources (DMWR)
Togipa Tuasaga, Director, American Samoa Environmental Protection Agency (ASEPA)
Ali' imau H. Scanlan, Jr., Director, Department of Commerce (DOC)
Lelei Peau, Deputy Director, DOC
Dr. Peter Craig, National Park of American Samoa (NPSA)
Sheila Wiegman, ASEPA
Nancy Daschbach, Fagatele Bay National Marine Sanctuary
Jennifer Aicher, American Samoa Community College (ASCC) Le Vai Moana Marine Laboratory
Flinn Curren and Marie-Claude Fakteau, DMWR

September 1999
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Workshop Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Workshop Focus</td>
<td>2</td>
</tr>
<tr>
<td>Background</td>
<td></td>
</tr>
<tr>
<td>1. Environmental trends in American Samoa</td>
<td>3</td>
</tr>
<tr>
<td>2. Agency reports</td>
<td>4</td>
</tr>
<tr>
<td>Threats to coral reefs in American Samoa</td>
<td>5</td>
</tr>
<tr>
<td>Key issues and workshop resolutions</td>
<td></td>
</tr>
<tr>
<td>1. Are reef resources being overfished?</td>
<td>6</td>
</tr>
<tr>
<td>2. How should reef "health" be monitored?</td>
<td>8</td>
</tr>
<tr>
<td>3. How much impact does local water quality have on reef resources?</td>
<td>8</td>
</tr>
<tr>
<td>4. Integrated island ecosystem management</td>
<td>9</td>
</tr>
<tr>
<td>Framework for 5-year Plan</td>
<td>11</td>
</tr>
<tr>
<td>1. Reef fishery assessment</td>
<td>11</td>
</tr>
<tr>
<td>2. Reef management</td>
<td>11</td>
</tr>
<tr>
<td>3. Reef health</td>
<td>12</td>
</tr>
<tr>
<td>4. Water quality</td>
<td>13</td>
</tr>
<tr>
<td>5. Education</td>
<td>14</td>
</tr>
<tr>
<td>6. Enforcement</td>
<td>14</td>
</tr>
<tr>
<td>Literature cited</td>
<td>17</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>17</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>1. List of workshop participants</td>
<td>18</td>
</tr>
<tr>
<td>2. Background: water quality</td>
<td>19</td>
</tr>
<tr>
<td>3. Background: fisheries</td>
<td>22</td>
</tr>
<tr>
<td>4. Background: corals</td>
<td>23</td>
</tr>
<tr>
<td>5. Background: algae</td>
<td>24</td>
</tr>
<tr>
<td>6. Background: coastal development</td>
<td>25</td>
</tr>
<tr>
<td>7. List of studies regarding overfishing in American Samoa</td>
<td>26</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

In May 1999, the American Samoa Coral Reef Advisory Group convened a workshop to develop a 5-year plan for coral reef management in the Territory. The group of local agencies, the public, and specialists from off-island reviewed coral reef issues from a small-island perspective and focused on three topics of local concern: (1) Are reef resources being overfished?, (2) How should reef "health" be monitored?, and (3) How much impact does local water quality have on reef resources? Principal conclusions were that local reefs were already overfished, and that water quality improvements in Pago Pago Harbor need to continue. The workshop and Advisory Group made the following resolutions:

Resolved: Overfishing is a serious and urgent problem on coral reefs in American Samoa. A major contributor to this problem is scuba fishing which should be prohibited in all territorial fisheries, as it is on Australia's Great Barrier Reef and several other tropical countries. Additionally, a full recovery plan for fisheries should include a network of marine protected areas, community-based management, monitoring of the total harvest of coral reef resources, and better enforcement of regulations.

Resolved: Despite welcome improvements in water quality in Pago Pago Bay, the harbor still does not support coral reef recovery, safe swimming, or fish that are safe to eat. A step-wise recovery plan should be implemented that builds upon the progress made to date.

Resolved: Coral reefs surrounding our islands can be directly darraged by land-based activities, and so land and sea environments cannot be viewed as being separate from each other. The Coral Reef Advisory Group strongly advocates that all land developments in the Territory be fully assessed for their potential impacts to coastal waters.

The Advisory Group subsequently crafted a set of recommendations for monitoring and research for the management of Samoa's coral reefs. These recommendations were drawn into the framework of a five year plan.

Fagafale Bay National Marine Sanctuary

WORKSHOP INTRODUCTION

There is worldwide interest in monitoring coral reefs for two general reasons. First, coral reefs are among the most diverse and productive communities on Earth, and they provide an important source of food, potential medications, and revenue from tourism. Second, alarms have been sounded that coral reefs worldwide are showing signs of major stress and mortality from both natural and human causes. Indeed, it has been estimated that two thirds of worldwide reefs have been degraded, 10% of them ‘beyond recognition’ (Brown et al. 1999).

Several international workshops have already been convened to address these issues and develop programs to monitor coral reefs (e.g., Rogers et al. 1994, English et al. 1997, Samoilys 1997). The purpose of the present workshop was to view this challenge from a small-island perspective, where local resources are far fewer than found in more developed countries with numerous management agencies and academic institutions. Our focus was to determine what information is really needed for practical management, and what tasks can realistically be accomplished by local agencies.

To accomplish these objectives and develop an updated 5-year Coral Reef Management Plan for the territory, the American Samoa Coral Reef Advisory Group invited a group of local and off-island coral reef experts to participate in a workshop held in May 1999 (“Coral Reef Workshop: practical management for small islands”). Participants are listed in Appendix 1.

The American Samoa Coral Reef Advisory Group would like to thank all the participants who attended the workshop in May. We appreciate everyone’s contribution to the development of this five year plan.

WORKSHOP FOCUS

Several pre-workshop meetings were held by the Advisory Group to identify coral reef issues of concern in American Samoa and to focus the workshop on these specific needs. The Advisory Group determined that a monitoring program for American Samoa should include the following elements:

• Management-driven approach. A practical set of tools identified and/or developed that are usable at the level of Samoan’s capacity, and that provide indicators and answers for coral resource managers.

• Achievable with local staff. While recognizing that off-island scientific expertise would be needed to address some issues and/or conduct surveys at multi-year intervals, what meaningful aspects of a monitoring program can be accomplished by local resources?

• Resilient to fluctuating expertise. Local technical staff are typically hired on 2-year contracts, thus on-island capabilities and expertise fluctuate on a regular basis.

• Comparability to other programs. To the degree possible, methodology should be consistent with those used to monitor coral reefs in other areas.
• Community input. Maintain community input and communication. Findings should be reported in an understandable manner to both management and the public.

In addition, the Advisory Group identified three areas for the workshop to consider in depth:
1. Are reef resources being overfished?
2. How should reef "health" be monitored?
3. How much impact does local water quality have on reef resources?

While these questions represented what the Advisory Group felt were key issues facing American Samoa, the questions were also presented to the workshop for evaluation. After Day 1 of the workshop (which presented information on the status of local resources and threats to them), the workshop agreed that the focus above was appropriate. Time limitations precluded discussions of additional topics.

BACKGROUND

Several trends in the local environment set the stage for the issues discussed in the workshop:

• Corals are recovering.
• Reef fish are not recovering.
• Human population growth strains the local environment.
• Climate is changing.
• Pago harbor is polluted.
• Environmental enforcement is low.

Corals are recovering. This trend is, of course, a welcome and exciting change, because our reefs had been severely damaged over the past two decades: a crown-of-thorns starfish invasion (1978), three hurricanes (1986, 1990, 1991), and mass coral bleaching due to warm temperatures (1994), as well chronic human impacts. By 1995, the reefs were beginning to recover, as evidenced by an abundance of young corals, and the recovery has continued through 1999.

The remaining trends are not good.

Population increase. Perhaps the most serious environmental and social problem facing the territory is its uncontrolled population growth rate. The population estimate of 65,000 in 1999 is increasing at a rate of about 3.7%, one of the fastest growth rates in the world, with a doubling time of only 19 years. A net increase of about 2000 people (mostly babies) is added to the island each year. A continued increase is expected given the high birth rate (4.5 children per female) and high proportion of pre-reproductives in the population (nearly 50% of the population is younger than age 20).
Overfishing. Key species such as giant clams (*faisau*) and parrotfish (*fuga*) are overfished, and there is heavy fishing pressure on surgeonfish (*aloa*). We also see fewer and/or smaller groupers (*galala*), snappers (*mu*), atule (*akule*) and sea turtles (*l'a sa, faumei uga*). Most village fishermen and elders that were interviewed believed that fishing had declined (Tuilagi and Green 1995).

Climate change. Air temperature has increased steadily over the past 15 years and is now 2°C higher than during the period 1960-1980. Warmer air and ocean temperatures will probably increase the frequency of hurricanes in the region. Also, warm water temperatures are known to kill corals under some circumstances.

Harbor pollution. Fish and substrates in Pago Pago Harbor are contaminated with heavy metals and other pollutants. A health advisory warning people not to eat harbor fish was issued in 1991. However, nutrient loading from canneries in the harbor was greatly reduced when the canneries were required to dispose of their wastes beyond the inner harbor.

Enforcement. Environmental violations are more frequently detected and prosecuted, but enforcement of environmental regulations is not widespread and many problems persist. Illegal fishing is a common problem in marine protected areas.

2. Agency reports

Overviews of water quality, fisheries, corals, algae and coastal developments in the territory were presented (Appendices 2-6). Types of data collected and locations of past and present sampling stations were identified so that a monitoring plan could build upon existing data.
THREATS TO CORAL REEFS IN AMERICAN SAMOA

Prior to designing a research and monitoring program, threats to local reefs need to be identified and, of those, which we can do something about. Three categories of threats were identified and ranked as being a high (H), medium (M) or low (L) concern:

(a) Human-related impacts
 - Overfishing of reef resources Priority: H
 - Coastal development & habitat destruction Priority: H
 - Oil and hazardous waste spills in Pago harbor Priority: H
 - Sedimentation Priority: M
 - Dumping/improper waste disposal Priority: M
 - Nutrient loading/eutrophication in Pago Harbor Priority: M
 - Nutrient loading/eutrophication other than Pago Harbor Priority: L
 - Oil and hazardous waste spills other than Pago Harbor Priority: L
 - Ship groundings Priority: L
 - Anchor damage Priority: L
 - Destructive fishing habits Priority: L
 - Marine debris from marine sources Priority: L
 - Alien species (i.e., ballast water) Priority: L
 - Crown-of-thorns starfish predation Priority: L
 - Coral diseases Priority: L
 - Collections for aquarium market Priority: L
 - Bio-prospecting/natural products Priority: L

(b) Threats that are a natural part of the ecosystem and/or we cannot affect.
 - Hurricanes Priority: H
 - Human population growth on Tutuila Island Priority: H
 - Global warming in American Samoa Priority: H
 - Foreign harvest of local stocks of sea turtles Priority: H
 - New industries for coral resources Priority: M
 - Increased UV radiation due to ozone depletion Priority: M

(c) Management issues
 - Education needed about reef conservation Priority: H
 - Lack of enforcement Priority: H
 - Jurisdictional problems Priority: H
 - Breakdown of traditional values Priority: H
It was generally agreed that the greatest adverse impacts to coral reefs in American Samoa, that we are able to do something about, were (1) overfishing of reef resources, followed by (2) coastal development and habitat destruction, and (3) oil and hazardous waste spills in Pago harbor (in discussions of threats Pago Pago Harbor, an industrial harbor with serious pollution problems, is to be treated separately from other coastal areas). Additionally, several management issues were considered to be important (education, enforcement).

In the summary diagram above, the current population of 65,000 people (96% on Tutuila Island) already strains the islands’ resources. The population is rapidly increasing which translates into continued coastal development pressure and habitat destruction. These are issues that are addressed by existing agency programs and the local permitting system (Project Notification and Review System) which reviews all applications for coastal developments. Temperature increases will impact reefs, but this is beyond our control. Overfishing and harbor pollution, however, are important issues that we must address.

KEY ISSUES AND WORKSHOP RESOLUTIONS

As previously indicated, the workshop identified three locally important issues (overfishing, reef health, and water quality). Three resolutions were also adopted by both the workshop and Advisory Group, and these are presented below.

1. Are reef resources being overfished?
The workshop swiftly concluded that there is already enough data available to demonstrate that local reefs are overfished. Rather than recommending new studies, the workshop felt that a clear statement of the problem should be prepared, as follows.

Coral reefs in American Samoa are seriously overfished and urgent action is needed to recover nearshore fish stocks. There is already ample scientific evidence to support this finding, and that delays for additional research are not warranted. This conclusion is based on 20 studies and reports, mostly conducted by the Department of Marine and Wildlife Resources and backed-up by research in Fagatele National Marine Sanctuary and the National Park of American Samoa. The evidence includes systematic surveys of nearshore fishery catches in...
the territory, scientific assessments of resource abundance on local reefs, 100 interviews with local fishermen and elders in 50 villages, and data reviews (see Appendix 7).

The evidence documents that key resources, such as giant clams (*faisua*) and parrotfish (*fuga*) are clearly overfished, and there is heavy fishing pressure on surgeonfish (*aloglo*). We also see fewer and/or smaller groupers (*gatala*), snappers (*mu*), atule (*akule*) and sea turtles (*I'a sa, laumei uga*). Most villagers interviewed (70%) believed that fishing had declined.

At a time when our coral habitats are finally growing back after being severely damaged by Hurricanes Val and Ofa, the workshop asked "where are the fish?" In a manner of speaking, it’s as if the house (habitat) has been repaired, but the rooms are empty.

The workshop identified overfishing as a key factor causing the decline. In particular, the panel felt that the fish were not able to withstand the increased fishing pressure caused by new, non-traditional fishing technology, specifically the underwater scuba gear used by spear fishermen in all fisheries. The workshop recommended that use of scuba gear while fishing should be prohibited in the territory, as it has been banned at other locations in the tropical Pacific and Caribbean (for example, Australia’s Great Barrier Reef and French Polynesia).

The group further emphasized that a full recovery plan for the fisheries should include the following measures:

- A network of marine protected areas to allow fish to recover, reproduce and re-seed overfished areas,
- Community-based fisheries management, whereby villages determine how they will manage their own catches,
- Monitoring the complete harvest of coral reef fish and invertebrates,
- Better enforcement of existing fisheries regulations.

The workshop concluded that the data are there, it is now time for action to protect local reef resources.

The Advisory Group’s resolution on overfishing

Resolved: Overfishing is a serious and urgent problem on coral reefs in American Samoa. A major contributor to this problem is scuba fishing which should be prohibited in all territorial fisheries, as it is on Australia’s Great Barrier Reef and several other tropical countries. Additionally, a full recovery plan for fisheries should include a network of marine protected areas, community-based management, monitoring of the total harvest of coral reef resources, and better enforcement of regulations.
2. How should reef "health" be monitored?
The workshop recommended the following actions for research and monitoring of reef health:

- Prepare a ‘Status of the Reef’ document about current reef conditions.
- Conduct comprehensive assessment of reef ecosystem at intervals of 3-5 years. This will require scientific expertise that is not usually available in local agencies.
- Local agencies should conduct a subset of key variables on a more frequent time scale (quarterly or yearly). The subset includes: belt transects for a select list of fish species, line transects for % coral cover and growth forms, and standard water quality data.
- Conduct cause/effect research, as needed.
- Include an educational component.

These points have been incorporated into the five year plan.

3. How much impact does local water quality have on reef resources?
Industrial development and population growth have caused many environmental stresses in Pago Pago Harbor and other watersheds. Port activities, ship repairing, oil terminal and tank farm development, military deployment, canny discharges, uncontrolled and inadequately treated human waste disposal, agricultural activities and residential development, and solid waste dumping have all had a negative impact on the ecosystem of Pago Pago Harbor and other watersheds. Corrective actions either through better Standard Operation Procedures (SOP), Best Management Practices (BMP), requirement of waste water treatment services, expansion of sewage treatment, solid waste collection, etc., have resulted in dramatic improvement in water quality in the harbor.

A review of water quality data and site visits to the harbor convinced the workshop panel that early signs of recovery were evident. Data collected from 1982 through 1997 shows EPA’s American Samoa Water Quality Standards (ASWQS) have been achieved in deep water sections of the Pago Harbor for nutrients and some other measurements. And, at several points in the outer harbor, new coral recruitments were observed.

Other evidence indicates that stressful conditions still exist in the harbor. The existing fish consumption ban in the inner harbor highlights that a toxicity problem persists. The workshop panel also observed the harbor deluged with turbid streamflow and trash during a storm event. The known freshwater ASWQS violations in Pago Pago Harbor (and other watersheds) points to a continued source of burden to coastal ecosystems. Storm-related elevation in bacterial indicator levels puts at risk the swimming public not only in Pago Pago Harbor but at many bathing areas around American Samoa. Further, current ASWQS for the harbor should not remain static, but be continually improved.
The following actions were recommended for research and monitoring of water quality with emphasis on Pago Pago Harbor, but including the rest of the islands.

- Regular monitoring of 18 major bays.
- Complete the toxicity studies in Pago Pago Harbor and island-wide.
- Conduct shoreline sanitary survey in harbor area.
- Procure data loggers and deploy at key sites.
- Use monitoring to determine water quality “hot spots”.
- Assess impact of sediment/erosion to reefs.
- Determine impact of piggeries on reef water quality.
- Examine impact of nutrients on reef flats (Nu’uuli vs. the rest of Tutuila).
- Examine nearshore ocean currents.
- Further determination of pollutant sources within the harbor and other watersheds.
- Expansion of water monitoring program to determine the dynamics of water quality parameters in the harbor watershed.
- Better enforcement of existing land-use activities to prevent conditions from deteriorating in all Tutuila watersheds.
- More frequent monitoring of public swimming areas to ensure their compliance with safe bacterial levels.

The Advisory Group’s resolution on water quality

Resolved: Despite welcome improvements in water quality in Pago Pago Bay, the harbor still does not support coral reef recovery, safe swimming, or fish that are safe to eat. A step-wise recovery plan should be implemented that builds upon the progress made to date.

4. Integrated Island Ecosystem Management

The Advisory Group also felt that it was useful to re-emphasize that land-based activities can have a direct impact on the coral reef environment. Some local issues are:

- sedimentation due to improper land development and use, mining and tree removal;
- poor water quality due to input of nutrients from sewage disposal, agricultural runoff and piggeries;
- alteration of the shoreline by sandmining, seawalls, jetties, filling and dredging;
- pollution from trash, chemicals and petroleum products.

All of these problems will continue to magnify as the population grows. The pressure for better roads, more shoreline development, more houses, more forest lost to plantations, increased number of automobiles, etc., will continue. A balance reflected in an integrated land and water management regime is needed to preserve both the resources of the land and those of the sea.
The Advisory Group further resolved

Coral reefs surrounding our islands can be directly damaged by land-based activities, and so land and sea environments cannot be viewed as being separate from each other. The American Samoa Coral Reef Advisory Group strongly advocates that all land developments in the Territory be fully assessed for their potential impact to coastal waters.
FRAMEWORK FOR FIVE-YEAR PLAN

Components and needs that feed into the 5-year plan are presented below. Table 1 presents proposed and ongoing projects and indicates the funding needs.

1. Reef Fisheries Assessment
 - Monitor complete harvest of reef resources annually.
 - Tutuila
 - a. restart subsistence gillnet surveys along south coast (i.e., the Wass survey area so that trends from earlier years can be determined). (dmwr)
 - b. assess subsistence fishery in National Park (npsa)
 - c. conduct market surveys (total catch) of the commercial coral reef fishery; if store invoices are used, should assess compliance with reporting requirements. (dmwr)
 - d. conduct fishery assessments for key species based on age analysis (dmwr).
 - age validation studies needed to verify fisheries analyses
 - e. examine Faga'as Bay study to determine why it is not recovering
 - f. monitor subsistence fisheries (dmwr)
 - g. assess subsistence fishery in National Park (npsa)

2. Reef Management
 - Review all coastal developments. Coastal development is one of the most serious impacts on coral reef health. Permits are required for all development proposals and most go through the Project Notification and Review System.
 - Review adequacy all fishing regulations. Conduct village meetings to determine what kinds of fishing and fishing gears should be 'allowable'. In this way, villagers would have a real voice in determining fishing regulations and it may result in increased conservation of coastal resources at the village level. It would also simplify fishing regulations which would not have to be re-written whenever a new fishing gear was introduced to the Territory.
 - Initiate community-based management to achieve sustainable harvests on a local basis. Educate and train local villagers to monitor and manage their coral reef resources.
 - a. Alofau village pilot study
 - b. expand to all villages in territory
 - Establish a network of Marine Protected Areas. In addition to small MPA's that might be established by communities (see above), assess need for additional large MPA's (managed by agencies). Are additional areas needed, or just better enforcement of existing MPA's?
• Funding to participate at relevant coral reef meetings. Because of the distances involved and the inadequate funding levels, it is difficult for local people to attend meetings, trainings and workshops. Additional funding earmarked for travel purposes is needed.

• More enforcement of all environmental regulations is needed. Additional officers, training and equipment are necessary to adequately enforce all environmental regulations, particularly those impacting coral reef health.

3. Reef Health

• Prepare a 'Status of the Reef' document about local reef conditions. This booklet will be used to educate decisionmakers and the local and off-island public.

• Conduct comprehensive assessment of reef ecosystem at intervals of 3-5 years.
 a. conduct fish/coral survey in 2000 (some funding available). This is a follow-up on the initial survey done in 1995.
 b. continue Faga' i lelei Bay long-term monitoring. This project has been funded on a three year cycle by the National Marine Sanctuary.

• Conduct a subset of key variables on a more frequent time scale by local agencies.
 a. annual surveys of percent coral and twice yearly surveys of selected fishes around Tutuila and Manu‘a.

• Projects
 a. re-establish giant clams on reef. Re-establishing overfished clams could supply a limited amount for subsistence use and augment dwindling populations.
 b. examine status of endangered sea turtles; hawksbill migration study
 c. reef mapping; detailed maps are necessary for informed management decision-making.
 d. crown-of-thorns response plan for Special Management Area (Ofu lagoon) in National Park of American Samoa.
 e. promote studies in Manu‘a Islands by creating and equipping a field office there
 f. enhance teaching lab facilities on Tutuila; put in a salt water pipeline to the American Samoa Community College Le Vai Moana Marine Laboratory.
 g. resource inventories (non-fisheries resources)

• Training and education component.
 a. travel to meetings for staff; see above.
 b. coral identification workshop to provide training in identification of corals for management resource surveys.
4. Water Quality

- Conduct monitoring projects in Pago Pago Harbor
 a. public safety monitoring: expand the monthly bacteria monitoring in swimming areas, including Faga’a’alu, Utulei, Pago boat ramp, Leloaloa and Aua.
 b. conduct a shoreline sanitary survey: biannual or annual walk-through inspection of the harbor shoreline and streams up to the high tide line.
 c. begin stream monitoring for non-point source pollution in the harbor: quarterly monitoring for nutrients, suspended solids, dissolved oxygen metals, and turbidity for one year. Sampling should take place at the tide line and at a point in the stream above all development. Sampling should be done during two storm events and two dry periods.
 d. monitor the water column: continue monitoring at deep water stations in the harbor, as performed by the NPDES permittees.

- Island-wide ocean monitoring
 a. continue quarterly ambient ocean monitoring program for two years to establish baseline data, afterwards once per year. Obtain data during storm events and include nearshore stations. Include multi-parameter data loggers.
 b. conduct a water quality project in Pala Lagoon: monitor (quarterly for one year) water for nutrients, the usual water quality parameters, and targeted, tiered measurements of toxic pollutants based on previous studies.

- Toxicity studies
 a. Complete tier II study: revisit historical studies of toxic compounds in fish, shellfish and sediments in Pago Harbor and other coastal areas noted to be of concern. Human health risk assessments would be necessary for any significant findings.
 b. conduct a toxicity source assessment: review sources of toxicity to the harbor and other areas for their contribution to the problem. Determine data needs, collect data and prepare a report on findings.
 c. conduct an assessment of consumer health as related to fisheries: complete testing of humans who frequently consume fish presumed to be contaminated.

- Research
 a. conduct an integrated stream/coast study using the watershed approach. At two locations, perhaps Fagasa and Leone, conduct monthly monitoring for at least one year of stream and nearshore reef habitats. The stream sampling component will be comprise turbidity, TSS, temp, nutrients, and DO. An important aspect of this project will be to determine the major sources of sedimentation along the reach of the streams. This will be accomplished by targeting sampling locations to get representative data above all development, below plantations, and below village development. In order to help determine the effects of stream water quality on the reef ecosystem, this project will include near-shore monitoring for nutrients, chlorophyll a, temperature,
salinity, sediment loading using sediment traps, coupled with stream and coral reef ecosystem surveys.

b. conduct an erosion and sedimentation study to identify sources and final destinations. Determine the primary source of erosion and sedimentation on the reef, including analyses of impacts to key biological resources.

c. develop sediment criteria for local coral reefs, and determine controls and specifications for best management practices.

5. Education

- Establish a Governor’s Task Force on population. The rapid increase of the human population in the Territory is probably the most serious environmental threat faced by the Territory.

- Enhance the marine science component of the Feleti Barstow library; purchase coral reef related books, journals and other resources for the new library.

- Conduct programs for marine awareness and education
 a. Envirobus: a bus with an environmental education theme would be an excellent way to take the message to the villages.
 b. Information boards: posted in public places highlighting coral reef issues
 c. Conduct workshops and seminars on coral reef issues

- Produce products to support marine awareness and education programs
 a. Coral reef videos
 b. Information materials

- Sea turtle public awareness programs. Sea turtles have historically been harvested for food in Samoa, but few remain today due to overharvest and habitat loss.

- Support American Samoa Power Authority’s (ASPA) Erase Litter project

6. Enforcement

- Support and increase enforcement of existing regulations.

- Increase enforcement capacity in local agencies.
<table>
<thead>
<tr>
<th>Projects</th>
<th>FY00</th>
<th>FY01</th>
<th>FY02</th>
<th>FY03</th>
<th>FY04</th>
<th>Lead agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>REEF FISHERIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor subsistence fishery</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>a. Tutuila (Wass survey area)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Ofu, Olosega, Ta'u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>c. National Park areas</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor total market fishery</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>Stock assessment of key species</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>Age validation studies</td>
<td>f</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>Inventory harvested invertebrates</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>REEF MANAGEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Samoan Marine Laboratory</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>advisory group</td>
</tr>
<tr>
<td>Coral Reef Program Coordinator</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>advisory group</td>
</tr>
<tr>
<td>Review all coastal developments</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td></td>
<td>pins</td>
</tr>
<tr>
<td>Review all fisheries regulations</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>Improve enforcement</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>Monitoring participation (travel)</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>Establish marine protected areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Community-based sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Alofa pilot</td>
<td>f</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>- Territory-wide villages</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>b. MPA network</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>advisory group</td>
</tr>
<tr>
<td>REEF HEALTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare “Status of Reefs”</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ascc/esa</td>
</tr>
<tr>
<td>Reef mapping</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>advisory group</td>
</tr>
<tr>
<td>Fagatele long-term surveys</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>soc</td>
</tr>
<tr>
<td>Expert fish/coral surveys</td>
<td>f/u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor National Park reefs</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>nps</td>
</tr>
<tr>
<td>Local fish/coral surveys</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>dmwr</td>
</tr>
<tr>
<td>Crown-thorns plan (Ofu lagoon)</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nps</td>
</tr>
<tr>
<td>Coral identification training</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>Monitor Vaoto Marine Park</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>dmwr</td>
</tr>
<tr>
<td>Re-establish giant clams on reefs</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>dmwr/maup</td>
</tr>
<tr>
<td>Facility/equipment for Manu’s research</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nps</td>
</tr>
<tr>
<td>College marine program enhancement</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td>ascc</td>
</tr>
<tr>
<td>Indicator organisms for pollution</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>Projects</td>
<td>FY00</td>
<td>FY01</td>
<td>FY02</td>
<td>FY03</td>
<td>FY04</td>
<td>Lead agency</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>WATER QUALITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pago Pago Harbor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. public safety monitoring</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>epa</td>
</tr>
<tr>
<td>b. shoreline sanitary survey</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>epa</td>
</tr>
<tr>
<td>c. stream monitoring</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>epa</td>
</tr>
<tr>
<td>d. water column monitoring</td>
<td>f</td>
<td>f</td>
<td></td>
<td>f</td>
<td>t</td>
<td>epa</td>
</tr>
<tr>
<td>Island-wide ocean monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. ambient ocean monitoring</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>epa</td>
</tr>
<tr>
<td>-multi data loggers/analysis</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>epa</td>
</tr>
<tr>
<td>b. Pala Lagoon project</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>epa</td>
</tr>
<tr>
<td>Toxicity studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Tier II study</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>epa</td>
</tr>
<tr>
<td>b. Toxicity source assessment</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>epa</td>
</tr>
<tr>
<td>c. Consumer health</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>epa</td>
</tr>
<tr>
<td>Integrated stream/coast study</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>epa</td>
</tr>
<tr>
<td>Sedimentation criteria and controls</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>epa</td>
</tr>
<tr>
<td>EDUCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Envirobus</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td>doc</td>
</tr>
<tr>
<td>Establish gov. task force on population</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td>doc</td>
</tr>
<tr>
<td>Marine resource center (library)</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>doc</td>
</tr>
<tr>
<td>Invertebrate field guide publication</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>doc</td>
</tr>
<tr>
<td>Visitor center: NPSA and FBNMS</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td>doc/npsa</td>
</tr>
<tr>
<td>Coral reef video</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>Workshops/conferences</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>Coral reef information materials</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
<tr>
<td>Erase Litter project</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>asp</td>
</tr>
<tr>
<td>Information boards</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dmwr</td>
</tr>
</tbody>
</table>
LITERATURE CITED

ACKNOWLEDGEMENTS

ASCRAG would like to acknowledge and thank the following people for their assistance during the workshop: Peter Rappa facilitated the meetings; Charles Birkeland, Alison Green, Alan Friedlander, Jon Brodie and Wendy Wiltsie provided technical and scientific expertise; Jackie Navarro, Pataipiao Lagai-Nagalapadi, Eileen Malae and Mark Kneubuhl assisted in recording.

Woodblock prints by Seeni Orthus, traditional Samoan carver

This workshop and document were funded by Department of Interior technical assistance grant #GEN-137.
APPENDIX 1. List of Workshop Participants

Dr. Charles Birkeland, University of Guam
Wendy Wiltse, Environmental Protection Agency, Hawaii
Dr. Jon Brodie, Great Barrier Reef Marine Park Authority, Townsville, Australia
Dr. Alison Green, Great Barrier Reef Marine Park Authority, Townsville, Australia
Dr. Alan Friedlander, Oceanic Institute, Hawaii
Dr. Paul Gabrielson, Visiting Researcher
Ufagafa Ray Tulafono, Director, Department of Marine and Wildlife Resources
Togipa Tausaga, Director, American Samoa Environmental Protection Agency
Peter Rappa, Sea Grant, Hawaii
Dr. Peter Craig, National Park of American Samoa
Sheila Wiegman, American Samoa Environmental Protection Agency
Nancy Daschbach, Fagatele Bay National Marine Sanctuary
Mark Barath, American Samoa Environmental Protection Agency
Catheriae Adler, Samoa News
Jennifer Aicher, American Samoa Community College
Flinn Curren, Department of Marine and Wildlife Resources
Francis Huber, American Samoa Environmental Protection Agency
Misipati Salaroa, American Samoa Coastal Management Program
Bronwyn Mitchell, American Samoa Coastal Management Program
Marie-Claude Furseau, Department of Marine and Wildlife Resources
Punipuau Lagais-Nagalapadi, Fagatele Bay National Marine Sanctuary
Mark Kneubuhl
Jackie Navarro
Eileen Malae, Americorps
Tiso Fa’amuli, ecotourism entrepreneur
Candyman
Gi Malala
Tony Langkilde
APPENDIX 2. Background: Water Quality

The following is a summary of historical and recent water quality data for the nearshore areas of Tutuila Island and Pago Pago Harbor. Information on current water quality issues and programs are also included.

Water Quality Data. Historical water quality data are found in a number of studies completed in the 1970s.

<table>
<thead>
<tr>
<th>Location</th>
<th>temp C</th>
<th>salinity 0/00</th>
<th>DO</th>
<th>turbid.</th>
<th>pH</th>
<th>TN</th>
<th>TP</th>
<th>chl a mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>open ocean</td>
<td>28.2</td>
<td>33.4</td>
<td>5.8</td>
<td>0.11</td>
<td>8.23</td>
<td>126</td>
<td>5.7</td>
<td>0.33</td>
</tr>
<tr>
<td>open coastal</td>
<td>28.1</td>
<td>33.5</td>
<td>5.9</td>
<td>0.15</td>
<td>8.24</td>
<td>114</td>
<td>16.7</td>
<td>0.17</td>
</tr>
<tr>
<td>embayment</td>
<td>28.2</td>
<td>33.4</td>
<td>5.7</td>
<td>0.18</td>
<td>8.24</td>
<td>151</td>
<td>16.7</td>
<td>0.30</td>
</tr>
<tr>
<td>Pago Harbor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) inner</td>
<td>28.2</td>
<td>33.4</td>
<td>5.8</td>
<td>0.51</td>
<td>8.32</td>
<td>577</td>
<td>14.6</td>
<td>16.0</td>
</tr>
<tr>
<td>b) outer</td>
<td>28.2</td>
<td>33.4</td>
<td>5.8</td>
<td>0.21</td>
<td>8.28</td>
<td>129</td>
<td>22.1</td>
<td>4.3</td>
</tr>
<tr>
<td>open ocean</td>
<td>26.6</td>
<td>NA*</td>
<td>5.3</td>
<td>0.76</td>
<td>8.14</td>
<td>109</td>
<td>17</td>
<td>0.36</td>
</tr>
<tr>
<td>open coastal</td>
<td>26.5</td>
<td>NA</td>
<td>7.1</td>
<td>1.33</td>
<td>8.22</td>
<td>108</td>
<td>18</td>
<td>0.42</td>
</tr>
<tr>
<td>embayment</td>
<td>26.3</td>
<td>NA</td>
<td>7.8</td>
<td>4.75</td>
<td>8.21</td>
<td>116</td>
<td>12</td>
<td>0.22</td>
</tr>
<tr>
<td>Pago Harbor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) inner</td>
<td>27.0</td>
<td>39.1</td>
<td>6.1</td>
<td>0.04</td>
<td>NA</td>
<td>68</td>
<td>28</td>
<td>2.7</td>
</tr>
<tr>
<td>b) outer</td>
<td>26.9</td>
<td>35.2</td>
<td>6.5</td>
<td>0.05</td>
<td>7.97</td>
<td>8</td>
<td>16</td>
<td>0.57</td>
</tr>
<tr>
<td>c) American Samoa Water Quality Standards (ASWQS):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ocean</td>
<td>29.4</td>
<td>5.5</td>
<td>0.20</td>
<td>6.5-8.6</td>
<td>115</td>
<td>11</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>open coastal</td>
<td>29.4</td>
<td>5.5</td>
<td>0.25</td>
<td>6.5-8.6</td>
<td>130</td>
<td>15</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>embayment</td>
<td>29.4</td>
<td>5.0</td>
<td>0.35</td>
<td>6.5-8.6</td>
<td>150</td>
<td>20</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Pago Harbor</td>
<td>29.4</td>
<td>5.0</td>
<td>0.35</td>
<td>6.5-8.6</td>
<td>200</td>
<td>30</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Water Quality Issues. Water quality issues in American Samoa have changed over the years as regulatory programs have developed, as the Territory increases in population, and as impacts resulting from development are detected. Some examples presented here are the nutrient inputs of the canneries into Pago Harbor, the finding of heavy metals in fish and sediments of Pago Harbor and various other locations, and the nonpoint source contributions from development and agriculture.

Until 1990, the two tuna canneries located in Pago Pago Harbor discharged all waste streams into the inner harbor, with the exception of sludge solids removed from the waste streams by dissolved air flotation. In 1990, the high nutrient strength waste streams were segregated and barged to a USEPA-approved ocean dump site off Tutuila Island along with the sludge solids.
By 1992, an outfall line was constructed to outer Pago Pago Harbor near Onesosopo Park for the remaining waste stream. The canneries continue to utilize this waste disposal scheme and now meet the ASWQS for the most part; however, the damage to the habitat of Pago Harbor still remains and the potential for recovery could be impacted by these and other industrial inputs.

In 1991, a human health advisory on the consumption of fish from inner Pago Pago Harbor was issued by the ASG after determining that high concentrations of metals, particularly lead, found in fish tissue could potentially cause serious health effects. An additional study was completed in 1992 in the fish from 12 sites around Tutuila Island and a human health risk assessment was completed finding lead contamination from 5 sites, mercury in 8 sites, and recommended confirmation on the finding of arsenic, because inorganic and organic concentrations of arsenic were not differentiated.

Streams, direct storm water runoff, and ground water seepage are one other major issues for local water quality. The high level of rainfall, steep terrain, and the poor use of Best Management Practices (BMP) to prevent nonpoint source pollution contribute to the problem. Examples of development sources are new coastal projects such as sea walls, harbor development, quarries, roads, and excavations. While much of the Pago Pago Bay area and the Tafuna Plains are sewered, the majority of the shoreline villages utilize septic tanks as the method of sewage treatment. Volcanic soils prevent the effective treatment of sewage from septic tanks, thereby increasing the nutrient and suspended solids discharges to streams, ground water and nearshore waters.

Water Quality Programs

Sewering of Tafuna Plains Area — this will continue as long as funding of about $1 -2 million per year is available and will decrease the contribution of septic tanks to streams and nearshore waters in the area.

Point Source Controls — the facilities, canneries, Southwest Marine (SWM), sewage treatment plants, and power plants are in varying stages of compliance with their NPDES permits. The canneries are in compliance, SWM has some metal contamination problems (TBT found in sediments), the sewage treatment plants provide primary treatment but are in compliance, and the power plants need to have a site investigation for underground oil contamination.

Nonpoint Source Program — about $200,000 per year and includes implementation of BMPs for erosion and stormwater. All new projects require plans to control this. Piggery waste disposal is a significant source not adequately addressed.

Watershed Restoration (Clean Water Action Plan) — priorities have been established, the action strategies for the Category I priorities are in the process of development by ASEPA staff, a Watershed Protection Plan has been completed in draft. The next steps will be implementation.

Water Quality Monitoring — this program is lagging and available data are spotty. Information on Pago Pago Harbor is adequate, but other areas need further sampling to establish a better data base. A monitoring program for this, and in response to demonstration and development projects, is in the process of development.

Toxicity — verification of the 1994 risk assessment as well as additional testing of the known affected population is needed. Funding is available, but work has not yet been
completed. This will be addressed via the TMDL activities ASEPA will undertake via the Clean Water Action Plan.

Pollution Prevention — recent improvements in collection of solid waste by ASPA will decrease the contribution of solid waste to the streams and nearshore waters. Better handling of hazardous materials and decrease in the generation of hazardous waste will assist to decrease toxic substances released to the environment. This program is being developed.

Erosion and Sediment Study — ASEPA will be utilizing contractor assistance to complete a study on erosion and sediment loading and sources building upon two past efforts and utilizing data obtained over the last 30 years.

Sheila Wiegman
American Samoa Environmental Protection Agency
APPENDIX 3. Background: Fisheries

Fishing on the coral reefs has been an important source of food for Samoans. Early Samoans used a variety of techniques and gear made from locally available or traded materials. Traditionally a council of chiefs from each village would control the use of marine resources through a system of taboos which reserved certain sizes and types of fish for the chiefs, and restricted fishing by gear, location and seasons. In more recent times a form of centralized government management has replaced traditional management, although many villages in American Samoa still practice limited management on their reefs.

Over the years, some fishing methods remain essentially unchanged, while changes in some fishing gear have increased fishing efficiency. Observations of people fishing and interviews with fishers can provide estimates of the amount caught by each type of fishing gear. Reef gleaning (gathering fish, shellfish, seaweed, etc. on the reef flats at low tide) is still a major input to the total catch. Woven fiber nets have been replaced by monofilament gill nets. Diving technology has changed fishing by the use of goggles or masks, spear guns, underwater flashlights and (after 1994) the use of SCUBA gear in the commercial fisheries.

Despite innovations in fishing technology, total estimated annual catch for Tutuila has dropped from almost 594,100 pounds in 1979 to 191,600 pounds in 1994. Some of this drop might be due to coral reef damage caused by hurricanes Ofa (1990) and Val (1991). The reefs appear to be recovering, but the total catch still has been decreasing. These numbers, plus the results of other studies conducted by DMWR, indicate that overfishing is occurring.

Flinn Curren
Department of Marine and Wildlife Resources
APPENDIX 4. Background: Coral data sources

Two types of quantitative coral data have been collected in American Samoa: multiple-year monitoring programs on Tutuila Island and 1-time snapshot surveys on all 7 islands during various years. Qualitative surveys of species presence are not included here.

1. Tutuila Island. The principal monitoring program in the territory is that by Birkeland et al., primarily in Fagatele Bay (6 transects) but also at 14 other sites around the island. Surveys were conducted in 1985, 1988, 1995, 1998 (and some types of data in 1982). Coral communities were surveyed by the point-quarter method. Their most recent report on corals provides overviews of COT and hurricane impacts but little data analysis for the 1995 survey and the 1998 report is not available yet. These surveys also include macro-benthos, algae and fish.

A second multiple-year survey is the Aua transect in Pago Harbor (surveyed in 1917, 1973, 1995) which documented decreases in coral species richness and abundance due to pollution, etc. (Green et al. 1997).

Quantitative snapshot surveys were made by Mundy (1996) in 1995 at 21 sites for coral species richness, colony size, density and % cover. Methods: 5 replicated 20m x 0.5m belt transects on the reef slope at 10-m depth. At most of the same sites, Green (1996) provided a second estimate of % coral cover and habitat characteristics at the 10-m depth, as well as at 3 depths at selected sites. An additional 15 sites were surveyed in the National Park for coral species, % cover by form, and size by genera (Green and Hunter 1998). Methods: the point method along 50-m transects at the 10-m depth.

2. Manu'a Islands (Ofu, Olosega, Ta'u). Hunter et al. (1993) provide a detailed snapshot of Ofu in 1992, with emphasis on Ofu lagoon. Methods: corals (50-m line transect, and random points along three 10-m video transects), fish (replicated stationary counts in a 10-m cylinder), macro-inverts (5x50-m belt transect) and algae (line transect). Coral data were collected in 1995 but remain unanalyzed.

Green (1996) and Mundy (1986) provide a snapshot at 8 additional sites in 1995.

3. Rose Atoll. A snapshot survey of % coral cover and growth forms was conducted at 4 sites and 3 depths in 1994-95 (Green 1996). There was also a flurry of miscellaneous surveys by USFWS after the longliner grounding at Rose in 1993.

4. Swains. A snapshot survey of % coral cover and growth forms was conducted at 2 sites in 1996 (Green 1996).
APPENDIX 5. Background: Algae

It is not an understatement to say that without algae there would be no "coral" reefs. Algae on coral reefs can be grouped in three categories, each of which is essential to a healthy coral reef. Algae occur as microscopic endosymbionts living and photosynthesizing within living coral tissue. It has been estimated that up to 25% of the calcium carbonate deposition by corals is supported by the productivity of the algal endosymbionts. The phenomenon known as "coral bleaching", where algal endosymbionts are expelled from coral tissue, is currently being studied extensively, due to the proposed relationship between warming of tropical ocean waters and coral bleaching. Algae also occur as "pink rocks" on coral reefs. These are encrusting coralline red algae that frequently are the major structural component of the reef habitat. The importance of this group of algae to the formation and maintenance of "coral" reefs has been known for over 75 years (Setchell 1924 and references therein), but little research has been done on the physiology, growth rates or effects of anthropogenic activity on these species. The third major group of algae on coral reefs are the "turf algae", composed of numerous species of fleshy and calcified green, red and brown algae and cyanobacteria (blue-green algae). Only in the last 15 years, have scientists begun to understand the importance of this group of algae to primary productivity on the reef, as a food source for reef fishes and as a habitat for small reef invertebrates.

Knowledge of all of these groups of algae in American Samoa is very limited. I know of no studies done locally on the microscopic endosymbionts of corals. The larger algae, including both the encrusting coralline red algae and the fleshy algae, were first documented by Setchell (1924), who recorded over 80 species from Tutuila. More recent studies by Birkeland et al. (1987, 1995) listed 57 and 26 species of algae, respectively, but these latter studies looked only at subtidal, coral reef habitats.

Because algae are so important to the maintenance of a coral reef ecosystem and because so little is known about these organisms is American Samoa, studies should be initiated and maintained to assess these algal groups.

Paul Gabrielson
Visiting Scientist
APPENDIX 6. Background: Coastal Development

The American Samoa Coastal Management Program (ASCMP), operating in the Department of Commerce since 1980, has developed regulatory and community-based approaches to protect the coastal zone. Some examples of ASCMP’s mandates are: wetlands management, mitigation of coastal hazards, non-point source pollution and shoreline development. ASCMP also administers the Project Notification & Review System (PNRS), which is a board of 8 public agencies with environmental concerns, who review land use permit applications, issue permits, and monitor compliance of all developments.

General Impact Activities. Given the small size of the Territory’s islands, the entire Territory is considered a Coastal Zone — any activity conducted on land is likely to impact coastal waters. Types of activities range from littering, stream degradation, and filling wetland areas for residential/commercial use, to major capital and infrastructure improvement projects such road construction, utility placement, transportation facilities, and shoreline protection.

Threats. The number of development activities has increased in recent years. Transportation ports have been modified; more shoreline revetment walls have been placed; utilities have been buried underground, primarily along the road and shoreline. All these activities cause surface run off, soil erosion, sedimentation, and some destruction of reef ecosystems. Wetland loss continues at an average rate of 4.5 acres annually as the wetlands are developed for residential/commercial use and dumpsites (Biosystem Analysis Inc. 1992).

Trends. Two socioeconomic trends affect local coastal environments: (1) population growth, and (2) economic activity. The population is increasing rapidly at 3.7% per annum, one of the highest growth rates in the world. This generates more development activities, which occur primarily along the coast due to limited developable land on our steep, mountainous islands. Within the period 1990-95, 38 permit applications were received for shoreline development (e.g., government and private proposals for seawalls, residential construction). With increasing development pressures, people are less inclined to comply with setback from streams, wetlands or coastal hazard areas. Additionally, limitations of flat land on Tutuila Island cause people to build houses and plantations on steep mountain slopes and other unfavorable areas. Economic activities also have a direct impact on the coastal areas. Two tuna companies and other industrial activities continue to stress the harbor environment.

The PNRS safety valve and environmental review process is a critical mechanism we use to manage development activities and their impacts to coastal waters in the Territory.

Lance Tauoa
American Samoa Coastal Management Program
APPENDIX 7. List of reports that document coral reef overfishing in American Samoa and/or recommend that management action is needed to protect local reef resources.

-describes a major reduction (54%) in catches of reef fish.

-describes the endangered status of sea turtles due to overharvest and habitat loss.

-describes the decline in local subsistence fishery

-describes decline in local subsistence fishery

-identifies overfishing as a high priority issue for DMWR

-describes overfishing as key problem in American Samoa

-describes overfishing as key problem in American Samoa

-100 village elders and fishermen in 50 of the 64 villages on Tutuila and Aunu'u note declines in fish abundance: 100% of those interviewed felt that faisua (giant clams) were less abundant and 70% felt that fish were less abundant.

BIBLIOGRAPHIC REFERENCES 26
- describes declines in subsistence catch

- describes continued low catches and rise of commercial scuba fishing where catches are sold to local markets

- documents severe reduction in green sea turtle populations

- documents severe reduction in hawksbill sea turtle populations

- identifies need for 'marine protected areas' in American Samoa

- heavy fishing pressure on alogo surgeonfish may be impacting local populations

- 'fage (parrotfish) in American Samoa are being overfished

- 'faisua (giant clams) are seriously overfished in American Samoa

- discusses the low abundance of fish that are typically harvested, and low abundance of large fish in general, both indicators of overfishing.

- review article reiterates overfishing of coral reef fishes in American Samoa.
1998. A preliminary survey of the coral reef resources in the Tutuila Unit of the National Park of American Samoa. Prepared for National Park of American Samoa. Detailed survey found few giant clams or large fishes, and fish were wary of divers, all indicators of increased fishing pressure.

-discusses overharvest of giant clams.